我们知道 Python 是一种动态语言,在声明一个变量时我们不需要显式地声明它的类型,例如下面的例子:
1 | a = 2 |
运行结果:
1 | 1 + a = 3 |
这里我们首先声明了一个变量 a
,并将其赋值为了 2,然后将最后的结果打印出来,程序输出来了正确的结果。但在这个过程中,我们没有声明它到底是什么类型。
但如果这时候我们将 a
变成一个字符串类型,结果会是怎样的呢?改写如下:
1 | a = '2' |
运行结果:
1 | TypeError: unsupported operand type(s) for +: 'int' and 'str' |
直接报错了,错误原因是我们进行了字符串类型的变量和数值类型变量的加和,两种数据类型不同,是无法进行相加的。
如果我们将上面的语句改写成一个方法定义:
1 | def add(a): |
这里定义了一个方法,传入一个参数,然后将其加 1 并返回。
如果这时候如果用下面的方式调用,传入的参数是一个数值类型:
1 | add(2) |
则可以正常输出结果 3。但如果我们传入的参数并不是我们期望的类型,比如传入一个字符类型,那么就会同样报刚才类似的错误。
但又由于 Python 的特性,很多情况下我们并不用去声明它的类型,因此从方法定义上面来看,我们实际上是不知道一个方法的参数到底应该传入什么类型的。
这样其实就造成了很多不方便的地方,在某些情况下一些复杂的方法,如果不借助于一些额外的说明,我们是不知道参数到底是什么类型的。
因此,Python 中的类型注解就显得比较重要了。
类型注解
在 Python 3.5 中,Python PEP 484 引入了类型注解(type hints),在 Python 3.6 中,PEP 526 又进一步引入了变量注解(Variable Annotations),所以上面的代码我们改写成如下写法:
1 | a: int = 2 |
具体的语法是可以归纳为两点:
- 在声明变量时,变量的后面可以加一个冒号,后面再写上变量的类型,如
int
、list 等等。
- 在声明方法返回值的时候,可以在方法的后面加一个箭头,后面加上返回值的类型,如
int
、list
等等。
在 PEP 8 中,具体的格式是这样规定的:
- 在声明变量类型时,变量后方紧跟一个冒号,冒号后面跟一个空格,再跟上变量的类型。
- 在声明方法返回值的时候,箭头左边是方法定义,箭头右边是返回值的类型,箭头左右两边都要留有空格。
有了这样的声明,以后我们如果看到这个方法的定义,我们就知道传入的参数类型了,如调用add
方法的时候,我们就知道传入的需要是一个数值类型的变量,而不是字符串类型,非常直观。
但值得注意的是,这种类型和变量注解实际上只是一种类型提示,对运行实际上是没有影响的,比如调用add
方法的时候,我们传入的不是int
类型,而是一个float
类型,它也不会报错,也不会对参数进行类型转换,如:
1 | add(1.5) |
我们传入的是一个 float 类型的数值 1.5,看下运行结果:
1 | 2.5 |
可以看到,运行结果正常输出,而且 1.5 并没有经过强制类型转换变成 1,否则结果会变成 2。
因此,类型和变量注解只是提供了一种提示,对于运行实际上没有任何影响。
不过有了类型注解,一些 IDE 是可以识别出来并提示的,比如 PyCharm 就可以识别出来在调用某个方法的时候参数类型不一致,会提示 WARNING。
比如上面的调用,如果在 PyCharm 中,就会有如下提示内容:
1 | Expected type 'int', got 'float' instead |
另外也有一些库是支持类型检查的,比如 mypy,安装之后,利用 mypy 即可检查出 Python 脚本中不符合类型注解的调用情况。
上面只是用一个简单的 int 类型做了实例,下面我们再看下一些相对复杂的数据结构,例如列表、元组、字典等类型怎么样来声明。
可想而知了,列表用 list 表示,元组用 tuple 表示,字典用 dict 来表示,那么很自然地,在声明的时候我们就很自然地写成这样了:
1 | names: list = ['Germey', 'Guido'] |
这么看上去没有问题,确实声明为了对应的类型,但实际上并不能反映整个列表、元组的结构,比如我们只通过类型注解是不知道names
里面的元素是什么类型的,只知道names
是一个列表list
类型,实际上里面都是字符串 str
类型。我们也不知道 version
这个元组的每一个元素是什么类型的,实际上是int
类型。但这些信息我们都无从得知。因此说,仅仅凭借list
、tuple
这样的声明是非常“弱”的,我们需要一种更强的类型声明。
这时候我们就需要借助于 typing
模块了,它提供了非常“强“的类型支持,比如 List[str]
、Tuple[int, int, int]
则可以表示由str
类型的元素组成的列表和由 int
类型的元素组成的长度为 3 的元组。所以上文的声明写法可以改写成下面的样子:
1 | from typing import List, Tuple, Dict |
这样一来,变量的类型便可以非常直观地体现出来了。
目前typing
模块也已经被加入到 Python 标准库中,不需要安装第三方模块,我们就可以直接使用了。
typing
下面我们再来详细看下typing
模块的具体用法,这里主要会介绍一些常用的注解类型,如List
、Tuple
、Dict
、Sequence
等等,了解了每个类型的具体使用方法,我们可以得心应手的对任何变量进行声明了。
在引入的时候就直接通过typing
模块引入就好了,例如:
1 | from typing import List, Tuple |
List
List
、列表,是list
的泛型,基本等同于list
,其后紧跟一个方括号,里面代表了构成这个列表的元素类型,如由数字构成的列表可以声明为:
1 | var: List[int or float] = [2, 3.5] |
另外还可以嵌套声明都是可以的:
1 | var: List[List[int]] = [[1, 2], [2, 3]] |
Tuple、NamedTuple
Tuple
、元组,是tuple
的泛型,其后紧跟一个方括号,方括号中按照顺序声明了构成本元组的元素类型,如 Tuple[X, Y]
代表了构成元组的第一个元素是 X 类型,第二个元素是 Y 类型。
比如想声明一个元组,分别代表姓名、年龄、身高,三个数据类型分别为str
、int
、float
,那么可以这么声明:
1 | person: Tuple[str, int, float] = ('Mike', 22, 1.75) |
同样地也可以使用类型嵌套。
NamedTuple
,是 collections.namedtuple
的泛型,实际上就和namedtuple
用法完全一致,但个人其实并不推荐使用 NamedTuple
,推荐使用attrs
这个库来声明一些具有表征意义的类。
Dict、Mapping、MutableMapping
Dict
、字典,是dict
的泛型;Mapping
,映射,是 collections.abc.Mapping
的泛型。根据官方文档,Dict
推荐用于注解返回类型,Mapping
推荐用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,中括号内分别声明键名、键值的类型,如:
1 | def size(rect: Mapping[str, int]) -> Dict[str, int]: |
这里将 Dict
用作了返回值类型注解,将Mapping
用作了参数类型注解。
MutableMapping
则是Mapping
对象的子类,在很多库中也经常用 MutableMapping
来代替Mapping
。
Set、AbstractSet
Set
、集合,是 set
的泛型;AbstractSet
是 collections.abc.Set
的泛型。根据官方文档,Set
推荐用于注解返回类型,AbstractSet
用于注解参数。它们的使用方法都是一样的,其后跟一个中括号,里面声明集合中元素的类型,如:
1 | def describe(s: AbstractSet[int]) -> Set[int]: |
这里将Set
用作了返回值类型注解,将 AbstractSet
用作了参数类型注解。
Sequence
Sequence
,是 collections.abc.Sequence
的泛型,在某些情况下,我们可能并不需要严格区分一个变量或参数到底是列表list
类型还是元组 tuple
类型,我们可以使用一个更为泛化的类型,叫做Sequence
,其用法类似于 List
,如:
1 | def square(elements: Sequence[float]) -> List[float]: |
NoReturn
NoReturn
,当一个方法没有返回结果时,为了注解它的返回类型,我们可以将其注解为NoReturn
,例如:
1 | def hello() -> NoReturn: |
Any
Any
,是一种特殊的类型,它可以代表所有类型,静态类型检查器的所有类型都与Any
类型兼容,所有的无参数类型注解和返回类型注解的都会默认使用Any
类型,也就是说,下面两个方法的声明是完全等价的:
1 | def add(a): |
原理类似于object
,所有的类型都是object
的子类。但如果我们将参数声明为object
类型,静态参数类型检查便会抛出错误,而Any
则不会,具体可以参考官方文档的说明:https://docs.python.org/zh-cn/3/library/typing.html?highlight=typing#the-any-type。
TypeVar
TypeVar
,我们可以借助它来自定义兼容特定类型的变量,比如有的变量声明为int
、float
、None
都是符合要求的,实际就是代表任意的数字或者空内容都可以,其他的类型则不可以,比如列表list
、字典dict
等等,像这样的情况,我们可以使用TypeVar
来表示。
例如一个人的身高,便可以使用int
或float
或 None
来表示,但不能用 dict
来表示,所以可以这么声明:
1 | height = 1.75 |
这里我们使用TypeVar
声明了一个Height
类型,然后将其用于注解方法的返回结果。
NewType
NewType
,我们可以借助于它来声明一些具有特殊含义的类型,例如像Tuple
的例子一样,我们需要将它表示为Person
,即一个人的含义,但但从表面上声明为Tuple
并不直观,所以我们可以使用NewType
为其声明一个类型,如:
1 | Person = NewType('Person', Tuple[str, int, float]) |
这里实际上person
就是一个tuple
类型,我们可以对其像tuple
一样正常操作。
Callable
Callable
,可调用类型,它通常用来注解一个方法,比如我们刚才声明了一个add
方法,它就是一个 Callable
类型:
1 | print(Callable, type(add), isinstance(add, Callable)) |
运行结果:
1 | typing.Callable <class 'function'> True |
在这里虽然二者add
利用type
方法得到的结果是function
,但实际上利用isinstance
方法判断确实是 True
。
Callable
在声明的时候需要使用 Callable[[Arg1Type, Arg2Type, ...], ReturnType]
这样的类型注解,将参数类型和返回值类型都要注解出来,例如:
1 | def date(year: int, month: int, day: int) -> str: |
这里首先声明了一个方法date
,接收三个int
参数,返回一个 str
结果,get_date_fn
方法返回了这个方法本身,它的返回值类型就可以标记为 Callable
,中括号内分别标记了返回的方法的参数类型和返回值类型。
Union
Union
,联合类型,Union[X, Y]
代表要么是 X 类型,要么是 Y 类型。
联合类型的联合类型等价于展平后的类型:
1 | Union[Union[int, str], float] == Union[int, str, float] |
仅有一个参数的联合类型会坍缩成参数自身,比如:
1 | Union[int] == int |
多余的参数会被跳过,比如:
1 | Union[int, str, int] == Union[int, str] |
在比较联合类型的时候,参数顺序会被忽略,比如:
1 | Union[int, str] == Union[str, int] |
这个在一些方法参数声明的时候比较有用,比如一个方法,要么传一个字符串表示的方法名,要么直接把方法传过来:
1 | def process(fn: Union[str, Callable]): |
这样的声明在一些类库方法定义的时候十分常见。
Optional
Optional
,意思是说这个参数可以为空或已经声明的类型,即 Optional[X]
等价于 Union[X, None]
。
但值得注意的是,这个并不等价于可选参数,当它作为参数类型注解的时候,不代表这个参数可以不传递了,而是说这个参数可以传为None
。
如果还是想不传 还是需要设置 默认值为 None
如当一个方法执行结果,如果执行完毕就不返回错误信息, 如果发生问题就返回错误信息,则可以这么声明:
1 | def judge(result: bool) -> Optional[str]: |
Generator
如果想代表一个生成器类型,可以使用 Generator
,它的声明比较特殊,其后的中括号紧跟着三个参数,分别代表YieldType
、SendType
、ReturnType
,如:
1 | def echo_round() -> Generator[int, float, str]: |
在这里yield
关键字后面紧跟的变量的类型就是YieldType
,yield
返回的结果的类型就是SendType
,最后生成器 return
的内容就是ReturnType
。
当然很多情况下,生成器往往只需要yield
内容就够了,我们是不需要 SendType
和ReturnType
的,可以将其设置为空,如:
1 | def infinite_stream(start: int) -> Generator[int, None, None]: |
案例实战
接下来让我们看一个实际的项目,看看经常用到的类型一般是怎么使用的。
这里我们看的库是 requests-html
,是由 Kenneth Reitz
所开发的,其 GitHub 地址为:https://github.com/psf/requests-html,下面我们主要看看它的源代码中一些类型是如何声明的。
这个库的源代码其实就一个文件,那就是 https://github.com/psf/requests-html/blob/master/requests_html.py,我们看一下它里面的一些` typing` 的定义和方法定义。
首先Typing
的定义部分如下:
1 | from typing import Set, Union, List, MutableMapping, Optional |
这里可以看到主要用到的类型有 Set
、Union
、List
、MutableMapping
、Optional
,这些在上文都已经做了解释,另外这里使用了多次 Union
来声明了一些新的类型,如 _Find
则要么是是 Element
对象的列表,要么是单个Element
对象,_Result
则要么是Result
对象的列表,要么是单个Result
对象。另外 _Attrs
其实就是字典类型,这里用 MutableMapping
来表示了,没有用Dict
,也没有用Mapping
。
接下来再看一个Element
类的声明:
1 | class Element(BaseParser): |
这里 __init__
方法接收非常多的参数,同时使用 _URL
、_DefaultEncoding
进行了参数类型注解,另外 attrs 方法使用了 _Attrs
进行了返回结果类型注解。
整体看下来,每个参数的类型、返回值都进行了清晰地注解,代码可读性大大提高。
以上便是类型注解和typing
模块的详细介绍。
官方文档:typing — 类型提示支持
文章原文: 使用类型注解让Python代码更易读